NIS Transformation and Recombination Learning in China

Shulin Gu TsingHua University, China

shulin008@hotmail.com

NIS Transformation and Recombination Learning in China

- (1) NIS as Analytical Instrument
- (2) NIS Transformation in China
- —Why does a gradual process work?
- (3) Re-combination Learning
- --Is a Chinese Model Emerging? How plural are leaning models and development paths?

NIS as Analytical Instrument

- The importance of institutions—defines incentives and the pattern of information flows
- "Interaction between technology and institutions"—it drives dynamic and complex innovation and change
- The importance of policy and policy institutions—policy process determines the outcome of reform programme; "Interaction between policy and the work of NIS"
- "Systems" for innovation—R&D institutions along are not innovation systems; firms alone can not innovate.
- Explanation of performance of aggregate social system via survey on micro-foundations

Evaluation Criteria on NIS Transformation

Openness	for the vitality of NIS In various forms: Technology Licensing; Procurement of capital goods; FDI; OEM Assembly; Sample Machine import			
Incentives	StrengthOrientation (to innovation or to quantitative expansion)			
Clustering	Characters of interaction between system's membersVertical (I-O relation) and horizontal relationsStructure (vertical integrated or network-based) and operational norms of firm			
Supporting institutions	Embody knowledge flows, mediate clustering/linkagesvia planning apparatus or market mediationPolicy capacity in strategic integrationLegal, educational, technological infrastructures			
S&E base	Competence structure and innovation potentialsStrength and specialized pattern of knowledge creationIntensity and responsiveness to the need of firms			
Learning dynamics	How the innovation "dynamo" firms learn and innovateModels of learning			

Year	R&D % N. Incom	Year	R&D%GDP	
1953	0.1	1978	1.5	The Pre-reform R&D
1954	0.2	1979	1.5	Institution Portfolio
1955	0.3	1980	1.5	Institution 1 of tiono
1956	0.6	1981	1.3	R&D establishments: total 9,153
1957	0.6	1982	1.3	In which
1958	1.0	1983	1.4	Those at the levels above "county": 5,793
1959	1.6	1984	1.4	Those at the county level: 3,360
1960	2.8	1985	1.2	
1961	2.0	1986	1.3	S&E: total 343 thousand
1962	1.5	1987	1.0	In which who work in the first category:
1963	1.9	1988	0.8	319 thousand.
1964	2.1	1989	0.8	
1965	2.0	1990	0.8	Per Capita GDP, USA=100
1966	1.6	1991	0.8	140
1967	1.0	1992	0.7	120
1968	1.0	1993	0.7	
1969	1.5	1994	0.7	100 - USA
1970	1.6	1995	0.6	80 — UK
1971	1.8	1996	0.6	Japan
1972	1.7	1997	0.6	60
1973	1.5	1998	0.7	40 ** China
1974	1.5	1999	0.8	40 — Korea
1975	1.6	2000	1.0	20
1976	1.6	2001	1.1	0 X X X
1977	1.6	2002	1.1	1920 1970 1000 1012 1050 1072 1002
1978	1.8 (1.5 of GDP)			1820 1870 1900 1913 1950 1973 1992

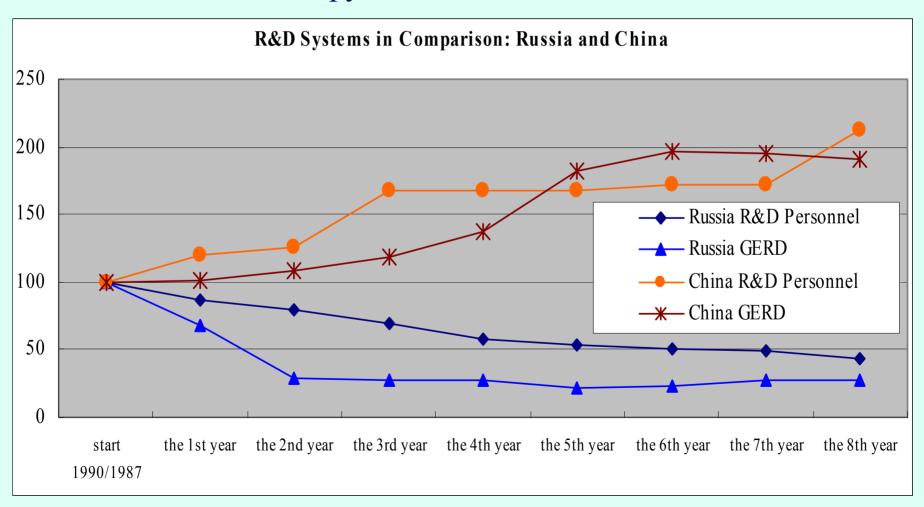
NIS Transformation in China: The policy *process*

1985	Technology Market (1)
1987	Merger (2)
	of R&D institutes into firms
1988	The Torch Programme
	Spin-off Enterprises and New and High Technology Industry Zones (3)
Early 1990	Transformation of R&D institutes on a whole institute basis (4)
1999	Clarify and legitimate upon real progress of transformation

Result: Multiple Policy Solutions

(All the measures at current price)

	1985	1990	1995	2000
(1) Technology Market Contract fees (RMB Billion)	2.30	7.51	26.83	65.07
(3) Spin-offs Number of NTEs Annual turnover (RMB Billion) Export (USD Billion)	- - -	1,690 5.94 0.69 (RMB B.)	12,937 151.2 1.55	20,796 920.9 13.81
R&D Performer (%) Enterprises Independent R&D institutes Universities	(1987) 29.3 54.7 15.9	n.a. n.a. n.a.	43.7 42.1 12.1	60.0 28.8 8.6


Official registration on transformation, By 2000

- **(2) Merger.....**311
- (4) Transformed to be profitable entities...629 (others) Become a part of University......24

Why does a gradual process of reform work?

China: A gradual process leads to continuous growth

Russia: A "Shock Therapy" is associated with decline

Why does a gradual process of reform work?

• "Unintended fit" needs the feasibility to adapt

-- Experimentation generates knowledge and information to reduce uncertainty

** Such information and knowledge serve as input in policy-making and in strategic adjustment at firm/R&D institute;

** This paves ways not only for policy adjustment but also pointing to where firms/R&D institutes to move for survival and further growth

Preconditions

- -- Adaptive/responsive policy-making
- --Strategic vision as a general guidance
- -- Consensus and Political stability: "controlled chaos"

"Recombination Learning" in Market Reform

Four Parallel Processes

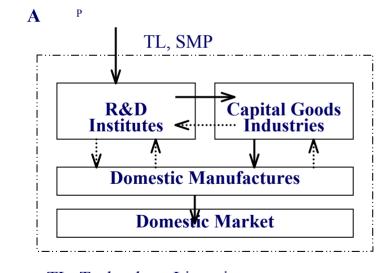
- 1, Market reform and trade liberalization (that produce new incentives and induce innovative capabilities reallocation);
- 2, Re-organization of accumulated capabilities (in novel and productive ways);
- 3, Intensive technical/managerial learning (to identify and fill major gaps in inherited capabilities); and
- 4, Institutional restructuring (that support these developments).

"Recombination Learning" in Market Reform

Example Sector	PC	Machinery	Textile
Technological gaps	Product architecture	Design engineeringProduction Engineering	DesignInternational marketing
Means of filling the gaps	Use and sales of advanced products	TechnologyOEM product	
Accumulated capabilities	DesignTestingR&DProduction	DesignTestingProduction	Production
Institutional restructuring	Spin-offs	Transformation of R&D institutesTransformation of state enterprises	Export-production ZonesJoint-venturesLocal Small startups

Learning Mechanisms in Comparison: Is a Chinese model emerging?

- "Recombination"—associated with 1, large scale of institutional restructuring; 2, "higher" level of competences are re-deployed through absorption of "lower" while missed competences
- Specialized competitive advantages are still in formation—transitional characteristics
- Both domestic and international markets are important in providing incentives and learning opportunities—the size of domestic market; the release of accumulated capabilities and depressed demands
- Is a Chinese model emerging?—plural learning models and development paths between NIS and over time


Learning Mechanisms in Comparison: The Korean and Taiwan Innovation system

NIS characteristics	Korea Learning at individual large firms	Taiwan Small firm network-based learning
Learning mechanism	Cyclic reverse traveling up the capability ladder	High entry and forward and backward linkages
Community of learning practice	Individual firms	A group of firms
Priority of S&T and industry policy	"Picking the winners" to give direct support	Invest in infrastructure and neutral regulatory stipulation
Supporting institutions	Provided by firms themselves under the close alliance with the government	Network, technological infrastructure; market friendly regulatory institutions
Location of R&D	80% at private firms	50% in public institutes
Technological strengths	'Mass' technology, large systems	'Niche' technology, small systems

Evaluation of NIS Transformation in China

Openness + + Incentives + +
Clustering + (in relation to industry structure and firm structure)

	1985	1990	1995	2000
Import of capital goods (USD Billion)	16.24	16.85	52.64	69.45 (1999)
FDI (USD Billion)	1.96	3.49	37.52	40.72

TL: Technology Licensing

SMP: Sample Machine Procurement

PE: Procurement of Equipment FDI: Foreign Direct Investment

OEM: OEM Assembly

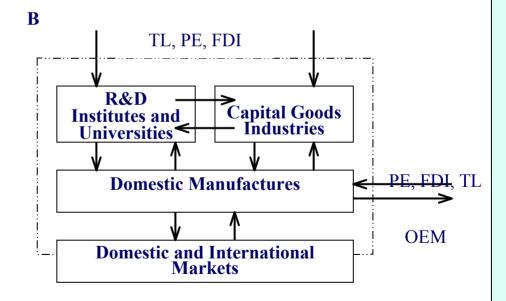


Figure 11 Transformation of the China's NIS

Evaluation of NIS Transformation in China

Supporting/Coordination Capacity + Science and Engineering Base + -

Science and Engineering Base + - (A "shallow" structure of innovation competences)

Learning Dynamics +

	Year 1	Year 2
(1) R&D expenditure Billion (GDP%)	1987 5.67 (1.0%)	2000 89.6 (1.0%)
(1.1) Basic Research %	7.7	5.2
(1.2) Applied Research %	32.1	17.0
(1.3) Experimental Development %	60.2	77.8
(2.1) SCI International Rank	1987 24	1999 10 (India 13) (Russia 8)
(2.2) ISTP International Rank	14	8 (India 23) (Russia 7)
(2.3) EI International Rank	10	3 (India 12) (Russia 9)
3)Patents, USPTO granted Number: China	1992 41	2001 266
India	24	179
Russia	67	239
S. Korea	586	3,763
Taiwan	1,252	6,544

Conclusions

- NIS is conceptual.
- Plural models and paths of development and adaptive policy or policy learning are among the most important conceptual implications.
- It gives support to necessary paradigm-shift in thinking of development approaches and of development and transformation policies

Conclusions

- NIS is instrumental as well
- The study on NIS transformation in China shows that the NIS approach has the power in handling complicated process at very high aggregate level of a nation like China
- Analysis of NIS is multiple-disciplinary. Analytical boundaries and research framework have to be developed suitable to the subject and goals of a certain study.

Conclusions

- China is in a historical turning-point again in socialeconomic and innovation system development. Challenges come from both the problems accumulated and changes in technological opportunities and international environment.
- Strengthening the S&E base, deepening the competence structure, improving supporting institutions, promoting clusters and networking, widening the participation of people in innovation and learning as diagnosed are among the most pressing challenges, if China is to maintain the momentum to development and modernization.

Quality Item	Evaluation
Openness	+ +
Incentives	+ +
Clustering	+
Supporting and Coordination Capacity	+ -
Science and Engineering Base	+ -
Learning Dynamics	+

Thank you!